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Double-diffusive convection with large variable gradients 
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The onset of double-diffusive convection is discussed for a layer of fluid in which the 
vertical salinity gradient varies with depth and for which the thermal and saline 
Rayleigh numbers R and R, are large. These conditions are similar to those that exist 
in a solar pond prior to the onset of any instability. It is shown that when convection 
occurs it takes the form of an overstable mode and is essentially confined to a narrow 
region of vertical extent - R;h x depth of the fluid layer, centred a t  the critical depth 
where the salt gradient is smallest. The leading terms in asymptotic expansions of the 
ratio RIR,, the frequency of oscillation p and the horizontal wavenumber a are 
determined for R, % 1.  The results predicted by the theory are shown to be in good 
agreement with numerical results and with observations of solar ponds. 

1. Introduction 
A layer of fluid that is stratified by temperature and by a solute (salt or sugar, 

for example) may become unstable even though the net density gradient increases 
with depth so that the layer is statically stable. This phenomenon is known as 
double-diffusive convection. It is now well documented (see Huppert & Turner 1981), 
and the stability characteristics of the layer have been explored for a variety of 
boundary conditions and parameter regimes. Most theoretical research in this field 
makes the idealization that the vertical temperature and solute concentration 
gradients, prior to the onset of instability, are constant. This is rarely the case in either 
laboratory (Shirtcliffe 1967,1969) or natural systems (Turner 1973 ; Zangrando 1979). 
In  an attempt to provide a more realistic theoretical model we shall consider the effect 
of a variable vertical solute concentration gradient on the stability of the layer. 

The form of the instability in a double-diffusive system depends upon whether the 
driving energy comes from the substance with higher or lower diffusivity. I n  the case 
in which, for example, hot salty water lies over cold, fresher water, the instability 
takes the form of ‘fingers’ and is monotone in time. On the other hand, when cold 
fresh water lies above hot salty water an oscillatory instability occurs, which gives 
rise to distinct homogeneous layers separated by relatively sharp density interfaces. 
We shall be concerned only with this second kind of instability in the present paper. 

It has been known since the turn of the century that certain lakes are hotter and 
saltier a t  the bottom than a t  the top (Hauser 1976). Typically, the vertical salt and 
temperature concentrations vary smoothly over much of the depth of the lake, but 
there are relatively narrow layers that exhibit the step-like profiles associated with 
double-diffusive instability. I n  these lakes the salinity gradient is maintained by salt 
leaching a t  the bottom, perhaps from a salt bed, and by the infusion of fresher river 
or sea water near the surface. Lake Vanda in Antarctica is a particularly well- 
documented example (Wilson & Wellman 1962; Hoare 1966). These lakes are heated 
by solar radiation, which penetrates to the depths where the reflected energy is 
absorbed. In the undisturbed (non-convecting) regions well away from the surface 
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and the bottom the temperature gradient may be regarded as linear, but it is not 
a good approximation to regard the salinity gradient as linear. 

It has been reported that the temperature at the bottom of such lakes may exceed 
the surface temperature by as much as 40 or 50 “C. This has led to the construction 
of ‘solar ponds’ as a potential energy source (Weinberger 1964; Zangrando 1979; 
Tabor 1980). They appear to be economically viable, at least as a direct heating 
source, provided of course that sufficient radiation is received from the sun and 
provided that convective overturning does not occur. If overturning occurs the 
temperature gradient is soon destroyed and the region near the bottom ceases to be 
a heat reservoir. Temperatures in excess of 90 OC have been reported at the bottom 
of stable solar ponds. Clearly a good criterion for the stability of solar ponds is of 
paramount jmportance and this is one of the motivations of the present paper. 
Observations of a working solar pond reported by Zangrando (1979) show that the 
vertical salinity gradient varies considerably with depth. A typical set of observations 
is reproduced as figure 1. 

We consider a layer of fluid in which the salt concentration and temperature 
increase with depth in such a way that the temperature gradient is uniform but the 
salinity gradient varies with depth. The analysis that follows may be applied also 
to a base state that is quasi-static, provided that its typical timescale is much longer 
than that of the disturbance. We shall not concern ourselves with how this steady 
state is set up and maintained but merely seek to define its stability characteristics. 
For constant temperature and salinity gradients Baines & Gill (1969) showed that, 
provided the horizontal surfaces of the layer are stress-free and perfect conductors 
of both heat and salt, the layer becomes unstable to small perturbations when 

a+7 27n4(1 +r)  (cr+r) R = -  
a+ 1 

7 
R S + T  0- 

where R and R, are the thermal and saline Rayleigh numbers, a is the Prandtl number 
and 7 is the ratio of saline diffusivity to thermal diffusivity. When instability occurs 
it does so as an overstability (i.e. i t  oscillates in time) whose vertical scale is that of 
the fluid layer. This contradicts observations of natural and man-made solar ponds 
in which the overturning is confined to relatively narrow depth bands. Indeed, all 
observations of convection in this regime indicate that the scale of the step-like 
profiles of the instability is very much smaller than that of the whole fluid layer. The 
constant-gradient model is therefore severely deficient in its prediction of the scale 
of the motion. Nevertheless, the assumption of linear gradients is the basis for a 
criterion for the stability of solar ponds proposed by Weinberger (1964) before Baines 
& Gill’s work. Hauser (1976) later demonstrated that when Weinberger’s criterion 
is written in terms of R, R, it becomes 

a+r 
a+1 R<--- RS 

We shall show in $ 3  that Weinberger’s criterion (2) corresponds to Baines & Gill’s 
criterion (l) ,  if the depth of the pond is assumed to be infinite. For many natural 
systems Hauser (1976) has shown that R, - 1010-1015 in the non-convecting regions, 
and Zangrando (1979) has shown that for man-made solar ponds R, is typically 
0 ( 1 O 1 O ) .  In the limit R, -+ 00 criteria ( 1 )  and (2) are identical. 

Theoretical work on a layer with variable gradients is confined to some numerical 
computations a t  present being undertaken at  Sandia Laboratories in New Mexico by 
Zangrando and Bertram (private communication). Their scheme assumes constant 
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temperature gradient, variable salinity gradient, and stress-free horizontal surfaces. 
They have obtained satisfactory results a t  moderate values of R, by expanding the 
dependent variables in Fourier series in the vertical variable and truncating a t  a 
suitably high number of terms. As R, increases, the scale of the disturbance decreases, 
and it becomes increasingly difficult to resolve. Bertram reported that 75 terms are 
needed to obtain 4-figure accuracy for R, = 10l2. 

In  order to complement Zangrando and Bertram’s results and in order to gain some 
insight into the stability of solar ponds we assume in this paper that R, 9 1 and look 
for an asymptotic solution of the governing equations. These equations are given in 
$2. Baines & Gill’s (1969) results for the constant-gradient problem, together with 
the results for a layer of infinite depth, are given in $3. The main analysis is given 
in $4. We are able to obtain the scale and structure of the disturbance and the critical 
depth at which it is concentrated. The first approximation to the stability criterion 
is shown to be identical with Weinberger’s criterion (2), and a second approximation 
is given. The theoretical results are compared briefly in $ 5 ,  with Zangrando and 
Bertram’s numerical results and with observations of natural and man-made solar 
ponds. 

2. The governing equations 
We consider a layer of fluid of depth d in which the values of the temperature T‘ 

and salinity S‘ at the lower boundary exceed their values at the upper boundary by 
AT’, AS’ respectively. The depth d will be used as a typical lengthscale, while AT’, 
AS’ characterize the temperature and salinity variations. We use dimensionless 
Cartesian coordinates (x, z )  with x measured horizontally and 2 measured vertically 
downwards from the upper surface x = 0. 

We shall assume that the boundary conditions are such that a steady state may 
be set up in which the fluid is motionless and in which the vertical temperature 
gradient is constant (by definition it is therefore unity) and the salinity gradient is 
a function G(x) of depth. Thus, in the base state 

where non-primed variables are dimensionless. 
We define t to be a dimensionless time scaled on d2Ky1 ,  where K~ is the coefficient 

of thermal diffusivity, and adopt K~ d-l as a typical velocity scale. Then the linearized 
Boussinesq perturbation equations are (cf. Baines & Gill 1969) 

( i - ~ v ~ ) S  = -G(z)--, a@ ax 

where @ is a stream function with velocity given by 

5-2 



126 I .  G. Walton 

and V2 E a2/dz2+d2/dz2.  The Prandtl number u is defined by IT = v / K T ,  where 11 is 
the coefficient of kinematic viscosity, and r = K , / K T ,  where K ,  is the coefficient of saline 
diffusivity. For simplicity we have ignored the variation of these coefficients with 
temperature. A typical value of r for salty water is 001, while u varies between about 
3 a t  70 "C to about 7 a t  20 O C  in a 10 yo salt concentration. The thermal and saline 
Rayleigh numbers are defined by 

respectively, where g is the acceleration due to gravity and a, P are the coefficients 
of cubical expansion with respect to thermal and saline variations. 

When X, T are eliminated from (4) we obtain the following equation for $ only: 

where h = R/R, .  We shall suppose that R, is fixed and seek to  determine the 
maximum value of A for which no unstable solutions to  (6) exist, subject to certain 
boundary conditions to be specified later. 

3. The constant-gradient solution 
It is useful for the subsequent development of the theory for variable salinity 

gradient G to recall the main results for constant gradients in which G = 1 .  The 
simplest case has stress-free boundaries a t  z = 0 , l  (see Baines & Gill 1969), but other 
boundary conditions have also been considered (Nield 1967). For stress-free 
boundaries a solution of (6) is sought in the form 

qk - exp ( i (pt  + ax))  sin (nm), (7) 

where n is an integer and a is the horizontal wavenumber. For neutrally stable 
solutions Im &D} = 0, but i t  turns out that  the principle of the exchange of stabilities 
does not hold in general for the most unstable mode, and Re ( p )  =!= 0. When (7 )  is 
substituted into (6) we find that 

ip3 + ( (a  + 7 + 1 )  k2p2 - ip( (V + u7 + 7 )  k4 - ( A  - 1 )  a R , ~ ~ k - ~ )  
- (u7k6 + ( 1  -?A) R,(Tu') = 0, (8) 

where k2 = a2 + n27r2. For R, > 0 the mode that first becomes unstable as h increases 
is n = 1, and it does so when 

u+r (u+r) (1  +r)  (n2+a2)3 
a2 ' V + l  uR, 

A=- + 
with 

The value of the horizontal wavenumber a that minimizes h is easily found to be 
a = a, = z/t 7r, and the critical values A,, P, of h , p  are given by 

p2 = (0-7 + u + 7 )  (a2 + 7 r 2 )  - ( A  - 1 ) uR, a"a2 + m y .  (9b) 

a+7 (u+r)  (1 +r)27m4 
4 '  

A, = - + 
u+l VR, 
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For R, % 1 with h - 1 we have 

h , - ( a + ~ ) ( ( ~ + l ) - ~ ,  p ~ - f ~ R , ( l - A , )  ( 1 1 %  b )  

to leading order in R,. (Note that, since r < 1 ,  A, < 1 ,  p: > 0.) 
We shall show, in $4, that if G varies with depth and R, % 1 ,  then the disturbance 

is confined to the neighbourhood of a certain critical depth. Provided that the critical 
depth is not close to  one of the boundaries, z = 0, 1 ,  the boundaries appear to be a t  
infinity on the scale of the disturbance, and G is constant to  a first approximation. 
One might expect that  the analysis for constant gradients in an unbounded fluid is 
relevant, and, in anticipation of that, we now outline the results for that case (Walin 
(1964) has also examined this case, but he did not give the results needed here.) We 
look for a solution of (6) in the form 

~ - exp{i(p*t+a*x+b*z)}, 

where a*, b” and p* have been scaled in terms of the diffusion lengthscale 
d* = [ v ~ ~ / P q ( d S * / d z * ) ] i ,  where dS*/dz*  is the imposed vertical salinity gradient. We 
cannot, of course, scale these quantities on the depth of the fluid, because that is now 
infinite. It is easily shown that 

a* = R$a, b* = R;ab, p* = R l t p ,  (12) 

where b replaces 7r in the preceding analysis. Equation (9) still holds with a , n , p  
written in terms of a*, b*,p*, but (10) is different. The minimum value of A occurs 
as a*, b* -+ 0 with b*/a* bounded, i.e. the wavelength of the disturbance can become 
indefinitely large. I n  that case 

For finite values of R,, the critical value of A is lower for an unbounded fluid than 
for a bounded fluid with stress-free boundaries. The results are, however, identical 
in the limit R, + co. Perhaps the most useful result for our present purposes is that 
the critical values of the horizontal and vertical wavenumbers are zero on the 
diffusion scale. 

4. Linear stability with variable salinity gradient and R, % 1 
We now turn to a discussion of the linear stability of a layer of fluid in which the 

vertical salinity gradient G of the undisturbed state varies with depth z below the 
upper surface. We shall derive an asymptotic solution for R, b 1 ,  but first i t  is helpful 
to state some of the salient, results of Zangrando and Bertram’s calculations: 

(i) the disturbance is essentially confined to the neighbourhood of a critical depth, 
denoted here by z ,  ; 

(ii) the solution oscillates with z - z ,  and appears to decay exponentially as Iz - zc( 
increases ; 

(iii) as R, increases the vertical and horizontal scales of the motion decrease (this 
explains why it  was difficult to obtain convergence at large values of R, ) ;  

(iv) the critical value of h appears to approach the value (g+r)  (g+ 1)-lG0 as R, 
increases, where Go is the value taken by G a t  z = z,; 

(v) G has a local minimum at  z = z,. 
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These results, together with ( 1  1 b )  and (12), suggest that  we seek a solution of (6) 

(14) 
in the form 

$ = exp{i(pot+az))$(z), 

where p = Rip, a = R,"a, z = z,+R;Pz; (15) 

a,p > 0; p,a, Z are 0(1) as R, + co. The scaling adopted for p is the same as that 
for constant gradients as R, -+ co whether or not the depth is finite. But a,  ,13 remain 
to be determined subject to the constraints. The salinity gradient G may be expanded 
in a Taylor series about z ,  as follows: 

G = G , + R , ~ ~ G , ' + B R , ~ ~ , ' ~ G ~ + o ( R ; ~ ~ ) .  (16) 

To leading order in R,, G is constant, and the boundaries are at infinity on the scale 
of 2. The results given in $3  suggest that  the critical value o f  h is then 
(v + T )  (a  + 1)-l Go, as indicated by Zangrando and Bertram's numerical results, and in 
agreement with Weinberger's (1964) criterion provided that the salinity gradient is 
evaluated at the critical depth. The results given in $ 3  also suggest that  the horizontal 
and vertical scales of the motion are infinite on the diffusion scale and that their ratio 
is bounded. This means that 

0 < /3 < a c a. 
Let us now substitute (14)-(16) into (6). We find that 9 satisfies 

(17)  

( i f i - E V 2 )  (ip-creV2) ( i f i - T S W )  v2g 
= ~ a ~ ( i p ( G - h ) - ~ ( G - ~ h )  V 2 - 2 ~ S ~ G ' D - ~ S ~ 2 G " )  $, (18) 

where D = d / d z ,  O2 = SD2 -12, and 

e = R,2"-; y = R-8 8 = R,2(8-.) 
s j  

Primes now denote differentiation of G with respect to  z .  In  view of the restrictions 
on a, p made in (1 7)  the quantities E ,  S, y are all vanishingly small as R, -+ CO. We 
wish to find solutions of (18) for which p is real and 3 tends exponentially to zero 
as 121 -+ 00. We do so by expanding in powers of the small parameters E ,  S, y .  Rather 
than attempt an exhaustive and systematic search of the various balances that are 
possible between these small quantities, we put forward certain arguments that  
narrow down the options open to  us. 

If we seek to balance the leading algebraic term on the right of (18) - a term in 
2 - with the leading derivative in z - the second - we obtain Airy's equation. It is well 
known that this equation has no solutions that have the desired property of tending 
exponentially to zero as Iz( + 00. We conclude that the coefficient of the term in 2 
is zero, and this requires G,l = 0, 

This result means that the critical depth z, is defined to be the depth a t  which the 
vertical salinity gradient has a turning point. Since the salinity gradient has a 
stabilizing effect on the disturbance and since the temperature gradient is independent 
of the depth, physical arguments suggest that  G has a minimum a t  z = z,. This agrees 
with Bertram's computations. 

The next most important algebraic term on the right of (18) is proportional to  p2P. 
It is of the same order of magnitude as the leading 2-derivative if we choose S = p2 
or, equivalently, p = +a. Then we have 

(19) 

E = R,2"-;, y = Rib-, 8 = R;". (20) 



Double-diffusive convection 129 

We now expand in powers of the two remaining independent small parameters e,y 
by writing 

When (16), (20), (21) are substituted into (18) and leading terms (O(e0yo)) are equated 

(22) 
to zero, we find that so = 4Go-hoo).  

When Go = 1 this result corresponds to the equivalent result (13 b )  for an infinite layer 
in which b*/a* = 0. Terms 0(~lyO) give 

3~00~1oaoo iSoqo+ ( ~ + 7 +  1)PEoGo s - 2 -  - 2 +  

= iC[@lOG" +%oa?o) (Go- boo) -P00G0~101+ uGo(G0 -boo). (23) 

The real part of this equation gives 

Equations (22), (24) may be solved for hoo,poo to give 

The result for ho0 agrees with that suggested by our earlier heuristic argument and 
also with Zangrando and Bertram's numerical results. It is equivalent to Weinberger's 
criterion (2)' in which the salinity gradient is evaluated at  the critical depth. 

The imaginary part of (23) gives 

When (22) is used to eliminate Go-hoo we find that 

%OF10 = -Buh,o. (26) 

This is again consistent with (13b) with b*/a* = 0. 
There are no forcing terms O@), so the next most important terms are O(e2) ,  O(p2). 

These terms are of the same order of magnitude if E = y or, equivalently, a = +. With 
this choice of scaling it may be shown that the critical value of ciao at which A,, takes 
its minimum value is infinity. This means that the critical value of the horizontal 
wavenumber is infinite on the Ri scale, but, as we have shown in $3, it is zero on 
the diffusion scale Ri.  An intermediate scaling is clearly needed, and this is obtained 
by balancing the terms in y2 with those in e3. This requires a = A, which means that 
the scale for the horizontal wavenumber is RP, and this lies in the range (Ri, Ri) as 
required. (The alternative choice of balancing p3 with e2 gives OL = &, which is too 
small.) 

(27 1 p = Rip, a = RPa, 2-2 ,  = R$z, 

and p2 = e3 = R$. With this choice of e,p we need to expand in powers of only one 
small parameter E :  

(28) 

We now substitute (27), (28) into (18) and equate terms O(sm),  m = 0,1 ,2 ,  ..., to zero. 
A t  leading order we recover (22), and at  O ( E )  we recover (23) in which the second suffix 

We now have 

(3, A,F,a2) = ($0 ,  A,,po, G)+e(F,, h, ,P , ,G)+ . . . . 
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has been dropped. The results (25), (26) still hold for p,, A,,p,. At O ( 2 )  we find that 

2i((r + 1 )  Citp, + (a + 7 + 0'7) 4- 2Ci:pop2 -Gg  = gAzG. 
The imaginary part of this equation gives 

P I  = 0, 

2$T,p2 + aA2po = (r + 7 + v7) a:. 
and it follows from (26) that  A, = 0 also. The real part of (29) gives 

Terms O(c3)  give a differential equation for 3,: 
mtD2 + 4 B ~ : ~ ~ G : z ~  - iA] 3, = 0, 

where A = A,+ iAi, with 

A, = OTU: - a7h2Cit- 2((r + 7 + 1 )  a ~ p o ~ z ,  

Ai = - 2Ci:SP3- 2$15:p2 + 3 ( ~ + 7 +  OT) afpoCit - ~A~Cifp~- CTA~G$P,. 
- 

The solution is I++, = constant x exp {+ikoZ2}, 

where kip: = ~CTGG;, Lopi = A .  (34% b )  

Since the layer is most unstable a t  z = z,, the salinity gradient has a minimum there, 
and hence G: > 0. It follows from (34a) that  k,  is real, in which case (34b) gives 

k,Pi = A,, Ai = 0. (35% b )  

The solution for 3, is then bounded as I z ~  + co, but i t  does not decay exponentially 
as required. I n  fact this solution breaks down for large values of I z ~  because secular 
terms enter a t  higher order. This means that we need to postulate the existence of 
an outer region in which 1z-z,I % &, where, i t  is hoped, the solution does decay 

(36) 
exponentially. Let us write 

2 - 2 ,  = €72, 

where 0 < y < 2 and e = R;14 as before. I n  this wider, outer, region we suppose that 
$, varies on the scale of z* and also on the shorter scale of 2.  Let us write 

(37) 

1 

1c. = $*(z*) exp { $ i k , , ~ * ~ e ~ 7 - ~  1. 
The solution given in (33) is incorporated into this expression as a rapid oscillation 
of wavelength on the z* scale. Using this representation for $, we find that 

V$ E exp{$i~,z*2e2~-3} [ - ~ - ~ 2 7 L : 2 * 2 + i ~ 3 k O L * + ~ 6 ~ 2 7 D * 2 ]  $*(z*),  (38) 

where D* = d/dz* and L* = 22*D* + 1.  The parameter y that determines the scaling 
for this region is obtained by balancing the leading z* derivative in (18) with the 
leading algebraic term on the right-hand side of (18). The term in has already 
been taken care of by the exponential term in (37), which leaves terms in E ~ ~ + ? Z * ~  

and E ~ Y z * ~ .  From (38) i t  can be seen that the leading z* derivative is O(e3).  A balance 
of all three of these terms is then obtained by taking y = 1.  We shall show below that 
this choice of y gives a solution that decays exponentially as Iz*I + 00. 

Having determined the new scaling for z we now proceed as before to set up an 
expansion in powers of E .  Fortunately we do not need to write down terms O(eo) ,  0(c1) 
because these are the same as before, and terms O ( 2 )  differ from those given in (29) 
only by the inclusion of two terms in z * ~ ,  which cancel each other out. At O(e3) ,  
however, we find a new differential equation for $$ : 

(r)o3 k,  L* + A:z*~ + ~ A , * z * ~  - A }  +$ = 0, (39) 
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where A is given in (32), and 

A: = - & ~ ~ G l c i $  + (V + T + 1) k:p:Ui - iG$ C Z : ~ :  k:, 

A,*=-1  '3- G"' 
6aa0p0 0 '  

The required solution is 

$.o* = constantx expf--k,lZ*2+Sik12Z*3), (40) 

where 2P$kokl1 =A,*,  2fi$k,k,, = A,*, p$ko = A .  (41 a,  b, c) 

Equation (41c) is identical with (34b), while the real part of (41a) gives 

This expression may be simplified using (25), (34) to  give 

For a solution that decays exponentially as Iz*I + co we need Re {kll} > 0, and since 
G l  > 0 we need poke > 0. This means that we need to take the positive square root 
in (34a), i.e. 

We may now eliminate k, from (35a) using (43), and a t  the same time eliminate P, 
using (31) and fit using (25b). The result is an equation connecting only two unknown 
quantities A,, il,. We find that A,  satisfies 

kopO = (jaG$G:)$. (43) 

where 

A, = ~ , 1 1 ~ 0 1 - 3  + h,,la,14, 
A,, = (1 - 7 )  (&gel)+ (1 + a)-' Go, 

(44) 

A,, = (a +?(7 + 14- a))/c. 

The ratio A ,  of thermal Rayleigh number R to saline Rayleigh number R, is then 
given by 

(45) 

where cz = R,S and 4, is given by (44). We need to know the minimum value of A 
for which solutions exist, and we must therefore find the minimum of the expression 
on the right of (44) as a function of laol. A simple calculation yields 

and the minimum occurs when 

IaoI = IaoIcrit = (3h21/4h,,)'. (47) 

In  terms of the original scaling the critical value of the horizontal wavenumber ci is 
given to  a first approximation by 

IaIcrit = ~ & I a o ~ c r i t  + o(R$)I. (48) 

The critical value pcrit of the frequency of the overstable oscillations is 
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where pPcrit is connected to APcrit and aOcrit through (31). The disturbance is confined 
to a region of vertical extent O(R$) centred a t  the critical depth z,, where G has 
a local minimum. The form taken by $ in this region may be described as a rapid 
oscillation subject to a relatively slow exponential decay. 

The solution described above agrees in general terms with the five features of 
Zangrando and Bertram's computed results listed at the beginning of this section. 
A more detailed comparison of our results will be given in $5. 

5. Discussion 
The results obtained in $4 allow us to  state a criterion for the stability of a layer 

of fluid str9tified by heat and salt when the thermal and saline gradients are large 
and only the vertical temperature gradient is constant. If Go is the minimum value 
of the salinity gradient in the layer, then the layer is stable to small perturbations 
if 

= h < hcrit = A,+ R,Sh,,i,+ . . . , (50) 
R - 
RS 

where A, = ( ( r+7)  (a+ 1)-'G0 and APmin is given by (46). For R, + 00 this criterion 
reduces to a form similar to Weinberger's criterion (2), with the important difference 
that the relevant value of the salinity gradient is the minimum value and not a value 
averaged over the whole layer. Since APmin > 0 the layer is slightly more stable for 
finite values of Rs than for R, = 00. 

An important feature of the solution is that  the disturbance is confined to the 
neighbourhood of the critical depth a t  which the salinity gradient reaches its 
minimum value. The horizontal boundaries z = 0 , l  are a t  infinity on the vertical scale 
of the disturbance which suggests that  the solution is independent of the depth d 
of the fluid layer. The choice of d as a lengthscale facilitates comparison of the results 
with observations and with Zangrando and Bertram's numerical results, but it would 
perhaps be more satisfactory from an analytic viewpoint to choose a more relevant 
lengthscale. A suitable candidate would be the radius of curvature of the salinity 
distribution a t  the critical depth. Equivalent results based on this scaling are given 
in the appendix. It should be noted that the values of R, R, relevant to solar ponds 
are large whichever lengthscale is adopted. 

The criterion (50) is particularly useful in determining the stability of solar ponds, 
whether man-made or natural. The most detailed observations of a man-made solar 
pond are given by Zangrando (1979). Several instances of instability were observed, 
and the temperature and salinity concentrations were recorded both before and after 
the instability occurred. We shall discuss one typical set of observations reproduced 
as figure 1 .  It was observed that the instability occurred a t  a depth of about 60 cm 
below the surface, and took the form of a step-like profile in the immediate 
neighbourhood of that depth. Zangrando approximated the temperature T* over a 
sublayer extending from 50-75 cm below the surface by a quadratic, 

(51 a) 

(51 6 )  

T *  = 55*0+ 11~0(1*3~-0*341~~)  (0 < z < l ) ,  

S* = 12-1 + 1*6(1-26~- 1 - 8 2 ~ ~ +  1 . 5 6 ~ ~ )  (0 < z < 1). 

and the salinity S* by a cubic, 

Using figure 1 i t  seems to  us than an equally good fit to the observed profiles is 

T* = 56*5+ 12.02, S* = 12*0+ 1-6(1~21~-- 1-25z2+ 1*04x3), (52a, b)  
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Temperature ("C) 

FIGURE 1. Temperature and salinity distributions on 22 May 1978, in the upper 100 cm of a solar 
pond. The insert represents the small convective layers established by 23 May 1978. (Taken from 
Zangrando 1979.) 

in which T* is approximated by a linear function of z,  so that our theory may be 
applied. Using (52a)  and Zangrando's salinity profile (51 b )  we find that z, = 59.7 em 
and A, = 045, whereas using (52a,  b )  we find that z, = 600 cm and A, = 0.58. In  both 
cases the prediction of the critical depth is excellent, but the critical value of A is 
strongly dependent on the salinity profile. The accuracy of the salinity data is crucial 
to an estimate of A,, and, as Zangrando has pointed out to us, it  is the most difficult 
quantity to estimate in operating ponds. The value of R, for these observations is 
lolo, and the first approximation to A, is 056, using the profiles (52). A more detailed 
and accurate analysis of the observational data is clearly needed before any firm 
conclusion can be drawn here, but our theory does seem to give promising results. 
The correction to the first approximation to herit is not more than a few per cent, 
which suggests that Weinberger's criterion, suitably interpreted, provides an excellent 
operating criterion for the stability of solar ponds. 

A survey of the non-convecting regions of five natural solar ponds has been given 
by Hauser (1976). In each system, R, - 1010-1015, h < 0 1  and ( a + ~ )  (a+ 1)-l = 09.  
Hauser made the quite-unjustifiable assumption that both temperature and salinity 
gradients could be approximated by a constant, in which case Go = 1, A, x 0.9, A, = 0. 
The condition for stability (50) then reduces to Weinberger's criterion and is seen to 
be easily satisfied. Again a more detailed examination of the data is required before 
a good comparison can be made with the theory, but, even allowing for a minimum 
salinity gradient of half the average value over the layer, the stability criterion is 
still easily satisfied. 

Let us now return to the numerical computations currently being undertaken by 
Zangrando and Bertram. They assumed that the vertical temperature gradient was 
linear and that the salinity gradient was variable: in most runs it was a quadratic 
with a minimum at the centre of the layer. The general features of their solution have 
already been discussed in 0 4, and we have demonstrated that our theoretical solution 
possesses the same features. 

Excellent agreement has been achieved for the critical values of A,p for R, = 10' 
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4 4 4 P 

* 108 02497 4.78 x 1 0 2  3.74 x 103 

* 10'2 02249 4-04 x 1 0 4  4.41 x 105 

TABLE 1 .  Comparison of the asymptotic results (marked +) with numerical results (marked *) by 
Zangrando and Bertram, for Pr = 7 ,  7 = &, Go = 0.25, G: = - 18 

+ 1 O8 02387 909 x 102 4.59 x 1 0 3  

+ 10'2 02244 4.71 x 104 4.63 x 1 0 5  

and 10l2 and Cr, = 025 (see table 1) .  Zangrando and Bertram hope to report fully 
on their results in due course and a detailed comparison with our asymptotic results 
will then be undertaken. 

Comparisons of linear asymptotic theory with linear numerical results are quite 
valid, but we must be very wary about comparing such results with observations of 
experiments in which nonlinear effects may be important. The danger is especially 
great in this problem because Huppert & Moore (1976) have shown that, a t  least for 
the classical Baines & Gill model, the exchange-of-stabilities solution is subcritically 
unstable. Furthermore, Proctor (1981) has demonstrated that for 7 4 1, R,74 5 1 
finite-amplitude monotonic solutions exist for thermal Rayleigh numbers below that 
predicted by linear theory for the onset of the oscillatory mode. This raises the 
possibility that solar ponds may become unstable to disturbances of small but finite 
amplitude a t  Rayleigh numbers well below those considered in this paper. However, 
Proctor's work is concerned with a layer with constant gradients in which R, is taken 
to be 0(1), and his detailed results may not prove to be a true guide to  the stability 
characteristics of a layer with variable gradients and R, >> 1.  

This work was begun during the author's visit to the Department of Mechanics 
and Structures a t  UCLA. He gratefully acknowledges the hospitality he received 
there and helpful discussions with Professor R. E. Kelly. This work was supported 
in part by the National Science Foundation under Grant No. ENG-79-02630. 

Appendix 
I n  this appendix we show that the solution given earlier is independent of the depth 

d of the fluid layer, and derive an alternative solution based on p, the radius of 
curvature of the salinity concentration at the critical depth. 

The thermal and saline Rayleigh numbers based on d are 

in which AT/d ,  AS/d be regarded as typical temperature and salt gradients. Let us 
define equivalent Rayleigh numbers R(p),  R,(p) based on p. Then 

If all lengths are now scaled on p instead of d ,  the results given earlier apply, but 
with minor modifications. First, the wavenumber a, should be replaced by a$(d/p) ,  
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where a,* is the horizontal wavenumber in the new scalings, and A,, should be replaced 
by A,*,(d/p), Ail = (1 -7) ( + r ~ ) i ( l + a ) - ~ G ~ .  Then 

A -A,  = ~ ; 3 ( h , , l q 3  + hzzlao14) 

= R~A,,(a0l-3 +R,1Az2~ao~4 

= Rs(p)+~zlI~o13 + W ( p )  ~,,ta014. 

This is the same expression as before, but is now independent of d. The horizontal 
scale of the motion is 

dlaolL& = dR$ laol&t = 

and again we arrive a t  the same expression as before, but with d replaced by p. Similar 
results apply to the vertical scale of the motion. 

R E F E R E N C E S  

BAINES, P.  G. & GILL, A. E. 1969 On thermohaline convection with linear gradients. J .  Fluid Mech. 

HAUSER, S. G. 1976 Exploring stability criteria of solar ponds. A.S.M.E. Publ. 76-WA/HT.62. 
HOARE, R.  A. 1966 Problems of heat transfer in Lake Vanda. Nature 210, 787. 
HUPPERT, H. E. & MOORE, D. R. 1976 Nonlinear double-diffusive convection. J .  Fluid Mech. 78, 

HUPPERT, H .  E. & TURNER, J. S. 1981 Double-diffusive convection. J .  Fluid Mech. 106, 299-330. 
PROCTOR, M. R. E. 1981 Steady sub-critical thermohaline convection. J .  Fluid Mech. 105,507-521. 
SHIRTCLIFFE, T. G. L. 1967 Thermosolutal convection : observation of an overstable mode. Nature 

213, 489490.  
SHIRTCLIFFE, T. G. L. 1969 An experimental investigation of thermosolutal convection at 

marginal stability. J .  Fluid Mech. 33, 183-200. 
TABOR, H. 1980 Non-convecting solar ponds. Phil. Trans. R .  Soc. Lond. A 295, 423-433. 
TURNER, J. S.  1973 Buoyancy Effects in Fluids. Cambridge University Press. 
WALIN, G. 1964 Note on the stability of water stratified by both salt and heat. Tellus 16,389-393. 
WEINBEROER, H. 1964 The physics of the solar pond. Solar Energy 8, 45-56. 
WILSON, A. T. & WELLMAN, H. W. 1962 Lake Vanda: an Antarctic lake. Nature 196, 1171. 
ZANGRANDO, F. 1979 Observation and analysis of a full scale experimental salt-gradient solar 

pond. Ph.U. thesis, Department of Physics and Astronomy, University of New Mexico, New 
Mexico. 

37, 28S306. 

821-854. 


